Skip to main content
search

Wave-structure-soil interaction for Te Wānanga, Auckland’s new waterfront

Australasian Coasts & Ports 2021 Conference, Christchurch

Te Wānanga, Auckland’s new waterfront public space, is part of the Downtown Infrastructure Development Programme, which aimed to revitalise the waterfront of downtown Auckland through a series of interconnected projects. The public space comprises an approximately 1,600 m2 suspended reinforced concrete wharf, featuring both an irregular seaward edge and numerous irregularly shaped apertures for architectural features. Show more…These include deck-mounted suspended steel planters which hold large Pōhutukawa trees, woven suspended nets, open apertures with sculpted steel balustrades and suspended mussel floats and ropes, as well as a series of safety piles along the seaward edge. Te Wānanga aims to blend the boundary between the city and the harbour with its architectural design inspired by New Zealand’s coast and culture. The unique architectural form, the low-lying deck level, proximity to Quay Street seawall, interface with simultaneous projects, and time pressure all added technical complexity. Overcoming this required in-depth analysis of wave-structure-soil interaction and close collaboration with the project partners. Development of a comprehensive structural model allowed for geometrical complexity to be accurately considered for rapid assessment of alternative construction staging options and for sensitivity analyses to varying ground conditions to be carried out. This allowed risks associated with unforeseen ground conditions during the construction phase to be managed. An adaptive design approach allowed for the architectural form of the low-lying deck to be retained whilst managing the future risk of wave overtopping through the later raising of the deck level. Wave uplift proved to be a significant load, especially for future sea level scenarios over the design life. However, seismic loading and durability considerations provided the critical design case scenarios..Show less…

Categories: Water
Tags: 2021
Author: Alex Vink, Andrew Brown, Emma Bullivant, Luke B. Storie